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1 Introduction
Severe acute respiratory syndrome-coronavirus 2 (SARS-CoV2) emerged in Wuhan, China, in November2019. By October 2020, this virus had resulted in more than 41.5 million cases of COVID-19 and 1 milliondeaths. The majority of COVID-19 cases currently being reported are predominantly in developed countries,such as the United States, Brazil, Russia, and France. Despite the increasing number of models and stud-ies on COVID-19, there is very little information available to inform humanitarian response interventions,the need for which may be unprecedented, particularly where infrastructure is lacking to effectively preventspread of transmission and treat affected patients.
In late 2019, the United Nations (UN) Office for the Coordination of Humanitarian Affairs (OCHA) Centrefor Humanitarian Data created a new workstream for predictive analytics. This was based on demand fromOCHA’s leadership to “use data, and especially the tools of predictive analytics to get ahead, to be more an-ticipatory, to predict what is about to happen and to trigger the response earlier.” This ambition aligns withthe overall goal of the Centre, which is to increase the use and impact of data in the humanitarian sector.The COVID-19 pandemic has brought into stark focus the need for data and the value of models to informresponse strategies. Anticipatory action is no longer an abstract idea but something populations are activelydoing by staying home and increasing the number of hospital beds to protect the most vulnerable popula-tions.
Epidemic forecasting is one tool through which we can gain an understanding of the final outbreak sizeand indicators of when the COVID-19 epidemic peaks in a country. This provides decision-makers with thecapability to plan, surge, and manage resources during a pandemic. UN OCHA and the Johns Hopkins Uni-versity Applied Physics Laboratory have therefore established a partnership to inform COVID-19 strategiesfor humanitarian interventions by both national authorities and the humanitarian community in selectedhigh-priority countries, resulting in increased technical capacity to predict new and compounded humani-tarian needs, and use of data science to arrive at interventions to mitigate them.
This partnership developed a series of adjustments to a novel COVID-19 model (JHUAPL-Bucky) that in-corporates different vulnerability factors to provide insights on the scale of the crisis in priority countriesat national and sub-national levels, how different response interventions are expected to impact the epi-demic curve, and the duration of the crisis in specific locations. The resultant model (OCHA-Bucky) strati-fies COVID-19 dynamics by age and population vulnerability. Input to the model consists of geographicallydistributed COVID-19 cases and deaths, as well as attributes such as inter-regional mobility, population vul-nerability, nonpharmaceutical interventions (NPIs) , and social contact matrices. Model output consists offuture projections of these same quantities, as well as severe cases (defined as a proportion of total cases).The model considers both inter-regional mobility of the population and time-varying NPIs. OCHA-Bucky hasbeen used to provide weekly projections to six OCHA country offices: Afghanistan, the Democratic Republicof Congo, Iraq, Somalia, Sudan, and South Sudan.
The results of thismodel, when applied in the context of the United States, have been included in the Centersfor Disease Control and Prevention (CDC) COVID-19Mathematical Modeling Forecasting Ensemble [1]. Here,we detail the modifications of the JHUAPL-Bucky model used to shift results to the context of countries inreceipt of humanitarian aid.
A number of critical complementary components must be modified in order to perform accurate diseasemodeling within this context. Namely, these include:

• Estimating disease parameters;
• Acquiring data sources that accurately reflect both the current and historical states of the outbreak;
• Estimating mobility within a country;
• Estimating the impact of secondary/tertiary factors on the vulnerability of a given population;
• Estimations of the effects of measures taken by individuals and governments to curb the spread ofthe disease; and
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• Estimations of the effects of the above at both the sub-national and national levels.
The following sections describe the OCHA-Buckymodel in detail. Section 2.1 gives an overview of themodeland its components. Further details related to parameter estimation, data sourcing, and model initializationare given in Sections 2.2 and 2.3, respectively. Section 3 details themodel input and output. Lastly, thismodelis publicly available; details about how to access the model as well as the corresponding documentationare given in Section 4.

2 Model Description
The JHUAPL-Bucky model is a COVID-19 metapopulation compartment model initially designed to estimatemedium-term (on the order of weeks) case incidence and healthcare usage at the second administrative(admin-2, ADM2) level (counties in the United States; cities or districts in various countries). These ADM2regions are all coupled using mobility information to approximate the inter- and intra-regional contacts be-tween the members of the populations. Using the historical case and death data, local demographic data,and a set of parameters derived from empirical studies (Section 2.2.1), the model infers a number of local-ized features (given in Table 1) that are related to the spread of COVID-19. Projecting forward in time, Buckythen uses an age-stratified compartmentmodel to estimate the case load aswell as provide outputs relatingto the healthcare burden of each locality. These time forecasts are performed numerous times (Monte Carloexperiments), with each individual simulation using minor modifications to the input parameters at random,scaled to the uncertainty of the estimates. The resulting collection of simulations is then used to obtainprobabilistic estimates for all output variables. A fork of JHUAPL-Bucky, the OCHA-Bucky model, addition-ally includes a set of new features to properly handle the unique aspects of epidemic modeling in countriesbeyond the United States. To this end, the OCHA-Bucky model includes a series of factors related to therelative vulnerability of local populations.
2.1 Model Overview
At its base, theOCHA-Buckymodel is a spatially distributed SEIRmodel. SEIRmodels are a class of determin-isticmodels used to demonstrate how infectious diseases that are spread by person-to-person transmissionin a population. The simplest versions of such models are systems of ordinary differential equations andare analysed mathematically [2].
Within the context of an SEIR model, disease dynamics are modeled over time by moving the populationthrough a series of compartments (otherwise known as "bins" or "states"). Those states are as follows:

• Susceptible (S): the fraction of the population that could be potentially subjected to the infection;
• Exposed (E): the fraction of the population that has been infected but does not show symptoms yet;
• Infectious (I): the fraction of the population that is infective after the latent period;
• Recovered (R): the fraction of the population that has been infected and recovered from the infection.

The total population is represented by the sum of the compartments. Basic assumptions of this type ofmodel:
• Once the model is initialized, no individuals are added to the susceptible group. It follows that birthsand natural deaths are unaccounted for, migration into and out of the region is frozen for the durationof a simulation, and none of the population has been vaccinated or is immune to the pathogen;
• The population within each strata is uniform, and each pair of individuals within the strata are equallylikely to interact;
• The probability of interaction between individuals in the population is not rare;
• Once infected, an individual cannot be reinfected with the virus.
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Figure 1: Model Diagram. See Table 1 for a description of the compartments and transition parameters. Notethat the compartments E, Iasym, Imild, Ihosp and Rhosp are gamma-distributed with shape parameters specifiedin the configuration file.
The OCHA-Bucky model consists of a collection of coupled and stratified SEIR models. Since COVID-19exhibits heavily age-dependent properties, wherein a majority of severe cases are in older individuals, SEIRmodels are stratified via the age demographic structure of a geographic region to obtain accurate estimatesof case severity and deaths. Additionally, to model the spatial dynamics of COVID spread, we consider a setof SEIR sub-models at the smallest geographic level for which we have appropriate data. (See Section 2.3for a discussion of available data.)
The basic structure of the model is displayed in Figure 1. Age is denoted by index i, and geographic regionsare denoted by index j. Within each strata, OCHA-Bucky models the susceptible and exposed populations,followed by one of three possible infected states: asymptomatic (Iasym), mild (Imild), and severe (Ihosp). Mem-bers of the population who are either asymptomatic or exhibit mild symptoms recover from the virus at arate γ. Those who exhibit severe symptoms and are in need of healthcare support will either recover after aperiod of illness at rate 1/τi or expire as a result of the virus at rate φiγ.
A critical component of the OCHA-Buckymodel is the parameterization of themodel (Section 2.2). A numberof parameters must be derived and/or estimated from their original data sources. These include, but are notlimited to, those listed in Table 1 as well as local estimates of local case doubling time, case reporting rate,case fatality rate, and case hospitalization rate. Further details of these quantities as well as how they areestimated are given in Section 2.2. All parameter estimation for the model includes the basic assumptionthat, once estimated and initialized, these parameters remain constant during the simulation period.
Coupling individual age and geographically stratified sub-models occurs across a number of dimensionsincluding disease state and pre-existing vulnerability. Sub-models are coupled together using both the spa-tial mobility matrix (see Section 2.3.3) and age-based contact matrices (see Section 2.3.5). Modeling of theoverall interaction rates between geographic locations and age groups is an important component in ac-curately modeling non-pharmaceutical Interventions (NPIs). OCHA-Bucky accounts for the implementationof NPIs (e.g., school closures, border closures, face mask wearing) via modifying either the social contactmatrices or the basic reproductive number, R0. Further details are given in Section 2.3.6.
Together, these components contribute to a model that is adaptable to a number of contexts. OCHA-Buckyis calibrated to the uncertainties in the case data and the disease parameters, leading to a model that isrobust to the quality and resolution of available input data.
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Variable Description

Sij Proportion of individuals who are susceptible to the virus
Eij Proportion of individuals who have been exposed to the virus
Ihospij Proportion of individuals that are exhibiting severe disease symptoms, and are in need of ahealthcare facility
Imild
ij Proportion of individuals that are exhibiting mild disease symptoms
Iasymp
ij Proportion of individuals who are infected but asymptomatic
Rij Proportion of individuals who have recovered from the virus and are no longer capable ofinfecting other individuals
Rhosp
ij Proportion of individualswhohave recovered from the virus after a period of time in a health-care facility

Dij Proportion of individuals who have succumbed as a direct result of the virus
Parameter Description

βij Force of infection on a member of age group i in location j
1/σ Viral latent period
α Rate of infections that are asymptomatic
ηi(νj) Fraction of cases necessitating healthcare facilities for age group i as a function of thelocal vulnerability index, νj
φi Case fatality rate for age group i
1/γ Infectious period
τi Recovery period from severe infection for age group i

Table 1: Description of OCHA-Bucky model variables and parameters corresponding to Figure 1.

2.2 Model Parameterization
2.2.1 Disease/Healthcare Parameters

The CDC has published pandemic planning scenarios [3] that contain recommended parameters describingbiological and epidemiological factors. Of these five planning scenarios, OCHA-Bucky uses scenario five,which contains the CDC’s current best estimates for disease severity and transmission. These parametersare described in detail, based on information available from the CDC, and summarized in Table 2.
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Parameter Description Bucky Variable Name Value (Interquartile Range)

Fraction of infections that are asymptomatic, α asym_frac 0.4
Relative infectiousness of asymptomatic indi-viduals rel_inf_asym 0.75
Fraction of transmission prior to symptomonset frac_trans_before_sym 0.5
Mean serial interval (days) Ts 6 (5.7)
Mean generation interval (days) Tg 7 (5.5, 8.5)
Case fatality ratio, φi CFR 0-49 years : 0.0005

50-64 years: 0.002
65+ years: 0.013

Case hospitalization ratio, ηi CHR 0-49 years : 0.017
50-64 years: 0.045
65+ years: 0.074

Time from symptom onset to hospitalization(days) I_TO_H_TIME 0-49 years : 6
50-64 years: 6
65+ years: 4

Duration of hospitalization (days) H_TIME 0-49 years : 4.9
50-64 years: 7.6
65+ years: 8.1

Time between death and reporting (days) D_REPORT_TIME 0-49 years : 7.1
50-64 years: 7.2
65+ years: 6.6

Table 2: CDC-Recommended Parameters as described in Scenario 5 of [3].
2.2.1.1 Disease TransmissionThe following parameters describe the transmissibility of the virus. The percentage of infections that areasymptomatic (α) refers to the percentage of infections that will never develop symptoms. This is a difficultparameter to estimate due to logistical complications (individuals would need to be tested to ensure theyremain asymptomatic while infectious) and because the level of asymptomatic infections varies by age.The best estimate for this parameter is the midpoint between the lower bound of [4], the upper bound of [5],which corresponds to the estimates from [6].
The relative infectiousness of asymptomatic individuals compared to symptomatic individuals (rel_inf_asym)is calculated using upper and lower bounds on the difference in viral dynamics between asymptomatic andsymptomatic cases. The lower bound is derived from data indicating that more severe cases have higherviral loads [7] and a study that indicates symptomatic cases shed for longer and have higher viral loadsthan asymptomatic cases [8]. Other studies indicate that both symptomatic and asymptomatic cases havesimilar duration and viral shedding [9], which is used as the upper bound.
The final parameter relating to disease transmission is the fraction of transmission prior to symptom onset(frac_trans_before_sym), which corresponds to the percentage of new cases caused by transmission froman individual before they become symptomatic. The lower bound is derived from [10], with the upper boundderived from [11].
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2.2.1.2 Disease Characteristics and SeverityThe mean serial interval, Ts, is the time in days from exposure to onset of symptoms and is taken from [12].The mean generation interval, Tg, is the period of time (in days) between symptom onset for one individualand symptom onset for a person they have infected. This value is from [10].
The case fatality ratio (CFR) is the number of individuals whowill die of the disease; the case hospitalization-severity ratio (CHR) corresponds to the number of cases that are severe and necessitate hospitalization.Within the context of the United States, this ratio corresponds to the individuals admitted to a hospital. In acontext where access to medical care is limited, this ratio corresponds to the ratio of individuals who exhibitsevere disease symptoms.
Hospital-related parameters are derived using data from COVID-Net [13] and the CDC’s Data Collation andIntegration for Public Health Event Response (DCIPHER). All data is taken from the period between March1, 2020 to July 15, 2020 unless otherwise noted. The time it takes from symptom onset to hospitalizationin days is denoted by I_to_H_time. The number of days an individual will be hospitalized is H_TIME. Finally,the number of days between death and reporting is D_REPORT_TIME.
2.2.2 Approximated and Derived Parameters

Unless otherwise noted, the model parameters that are derived from input parameters1 and the historicaldata are estimated as the average value across the entire population of a region (i.e., they are not age-stratified). This limitation results from having a lack of age-stratified historical case and death data in mostregions. Additionally, some parameters are only derived at the national (ADM0) level due to sparse reportingat the sub-national level (see footnotes).
• Local mean Case Fatality Ratio, φj ;
We must begin by estimating the local overall CFR for each region based on the local demographics.Since the fatality rate for COVID-19 is highly age dependent, this overall CFR will vary dramaticallybetween region with different age structure [15]. By contracting the CFR as a function of age with thelocal age demographics of each region, we can obtain the region overall estimate for the CFR,

φj = φiNij .

• Case Reporting Rate, ρj ;
In order to estimate the local fraction of COVID-19 cases that are reported in the historical data, OCHA-Bucky uses a method similar to Russel et al. [16] based on the deviation from the expected CFR. Usingthe derived CFR and the historical case and death data, the OCHA-Bucky model first estimates theoverall case reporting rate for symptomatic cases at theADM2 level. This is done using the assumptionthat the ratio of the expected CFR for each region based on the local demographics, φj to the CFRcalculated from the cumulative historical data, φhistj

2 i.e.
ρj =

φj
φhistj

=
φiNij

φhistj

.

In calculating φdataj , a lag in the reporting of deaths equal to the given input parameter is assumed ??.The estimated case reporting rate for each of the last X number of days is then calculated; the meanvalue in each region is used.
• Doubling Time, TD ;

1Throughout our discussion in this section we make use of Einstein notation[14] to describe the mathematics. This is owed to thefact that most of the variables are tensors by virtue of the fact that they are stratified in multiple ways (e.g., age and locality)Most importantly, we use the notation of a tensor contraction to represent the summed multiplication along an axis. i.e. cixi =∑
i cix

i for all indices that appear as both upper and lower indices in a single term but are otherwise undefined.2In OCHA-Bucky, the the value is the CFR derived from the historical data, φhistj is estimated at the the country level from the WHOcountry level case/death history and used uniformly throughout all sub-regions. This is done to circumvent potential data issues presentin the local case data in various countries.
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Rather then explicitly include a parameter controlling the transmission rate, Bucky uses the recenthistorical data to estimate transmission at the local level 3. The local doubling time TD,j is estimatedby first considering the historical data prior to the date in which the simulation will begin. Historicaldata is used to calculate the doubling time for the seven days prior to simulation. These historicaldoubling times are then averaged to yield the value of TD,j for a particular simulation. Once thesevalues are calculated, methods similar to those described in [17] can be used to estimate the latentperiod, 1/σ, infectious period, 1/γ, as well as an estimate of the effective R0 value. These methodsalso yield the shape parameters of the gamma-distributions corresponding to E, Iasym, Imild, and Ihospcompartments.
• Case Hospitalization Ratio with Vulnerability, ηi(νj);
To account for the inclusion of the vulnerability index in OCHA-Bucky, we rescale the population frac-tion requiring healthcare support (the CHR, ηi) based on the local fraction of vulnerable population,
νj :

ηi(νj) = (1− νj)ηi + V νjηi

where V is the relative severity among the vulnerable population (See 2.3.2 for how this is estimated).
• Contact rate between susceptible and infected individuals, βij ;
The quantity βij represents the average number of contacts per person per time,multiplied by the prob-ability of disease transmission in a contact between a susceptible and an infectious subject. WithinBucky, this consists of the rate that an individual in age group i in location j gets infected by the virus.This depends on three quantities:

1. The infectivity rate of the virus;
2. The average contact between someone from age group i and individuals across all other agegroups;
3. The average rate of mobility into location j from across all other locations in the simulation.

2.3 Data Sources
2.3.1 Population Data

In order to estimate the age- and sex-disaggregated population for each ADM2 region two different datasetsare combined:
• Administrative boundaries shapefiles at the ADM2 level from the Humanitarian Data Exchange (HDX);
• United Nations -adjusted WorldPop age and sex disaggregated population raster data.

Input consists of raster data with the administrative region polygons for the province/state (ADM1) anddistrict/county (ADM2) to get total populations for each region, stratified by age and sex. Then, values arescaled so that the total population is consistent with the regional UN-adjusted population.
2.3.2 Vulnerability Parameters

The fraction of the population in an ADM2 region that is particularly vulnerable to COVID-19 is estimated bycalculating the proportion of the population effected by those factors described in Sections 2.3.2.1 – 2.3.2.4.To avoid confounding factors contributing to a population’s increased vulnerability, we select the maximumof these proportions and consider this to be the proportion of the population that is at increased vulnerabilityto the effects of COVID-19. Those in the population that are considered vulnerable have a higher risk of asevere case or death (and hence a higher CHR and CFR) than non-vulnerable members of a region. Givenliterature estimates, the vulnerable population is given a CHR that is 1.5 times greater than the average CHRof a region (calculated via age and gender demographic information). 4

3In OCHA-Bucky, this estimation if performed at the nation level using WHO case data, similar to the estimation of reported CFR.4The CFR carries the CHR scalar multiplication forward since CFR is estimated as a proportion of those with severe cases.
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2.3.2.1 Urban/Rural disaggregationAlthough not a risk factor on its own, there are several vulnerabilities that scale differently with urban andrural populations. The COVID-19 crisis has impacted urban areas significantly more than rural areas, dueprimarily to mobility and proximity to other ADM2 regions, which increase transmission rates. Urban/ruralstratification is available in raster format fromWorldPop. To calculate the urban-rural fraction for each ADM2region, data is taken from Global Human Settlement Layer. Based on the classifications available in [18]anything denser than suburban (class 21 or above) is considered to be urban, and the rest to be rural.
2.3.2.2 Food insecurityThere is evidence that weight impacts the severity of influenza and other respiratory viruses [19]. We haveused food security as an indicator of population weight and other factors that effect the populations base-line ability to respond to respiratory illness. Hence, we scale our our vulnerability factor, νj by levels of foodsecurity within the region. Food insecurity data is obtained from the Integrated Food Security Phase Clas-sification (IPC) Global Platform. The proportion of individuals living in regions at IPC level 3 or greater areconsidered at-risk. The data tend to have a mix of information at the ADM1 and ADM2 levels; the mostgranular data is utilized for this calculation.
2.3.2.3 Indoor air pollution - indoor cooking fuelsThe use of indoor cooking fuels is a risk factor for COVID-19 whose prevalence depends on an urban or ruralsetting. Data on the use of solid fuels is obtained from the World Health Organization. The total fraction ofthe population using solid fuels is calculated by re-scaling at each location the urban/rural estimates fromWHO by the corresponding urban/rural population fraction estimated according to 2.3.2.1. There is evidencelinking indoor air pollution and respiratory illness [20]. Based on the available literature, we estimated thatthose that used solid cooking fuels are 1.8 times more likely to develop a severe infection.
2.3.2.4 Medical comorbiditiesMedical co-morbidities, such as diabetes, cardiovascular disease, and tuberculosis, were considered as pos-sible additional vulnerability parameters for cases and deaths. However, the OCHA-Bucky model does notuse these parameters, as they are highly correlated with age and gender, and have little additional impacton vulnerability and death rate estimates.
2.3.3 Mobility Data and Matrix Generation

A required input of the model is the amount of interaction that occurs between different regions at the sub-national level. Mobility matrix data is used to simulate disease spread across different administrative unitsof a country. The JHUAPL-Bucky model assumes contact between various regions through using a combi-nation of various sources of cell-phone based mobility estimates. In the OCHA-Bucky model, due to a lackof mobile phone based estimates, contact between ADM2 regions is approximated through an analysis ofroad network data.
Road density data from Humanitarian OpenStreetMap (HOTOSM) is used to estimate the strength of theconnection between all ADM2 regions considered. To create the mobility matrix using roads data, a roadsshapefile is read, and roads that intersect with at least one ADM2 border are kept. For each road, a list isthen created of which ADM2 regions the road passes through. Completing this gives a list of region to re-gion pairs, for which geographic distance (between ADM2 geographic centroids) and road connectivity arecalculated. To calculate road connectivity, road network lines are obtained from HOTOSM on HDX. The roadclassification system from HOTOSM is used to apply weights for each road type, calculated by multiplyingthe estimated typical speed and number of lanes for each road class; connectivity is defined as the sum ofall roads connecting the region pair.
Road connectivity, the motor vehicle ownership fraction, and the reciprocal geographic distance betweenregions are all then multiplied together to give estimates of connectivity between ADM2 pairs. Adjacentregions with many large road connections necessarily have higher connectivity values than those whichhave few small or even no road connections. Long-range or non-adjacent interactions between regions arealso considered, especially in cases where a road crosses more than two regional boundaries. However,the diminishing weakness of non-adjacent ADM2 pairs is captured through the reciprocal of the geographic
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centroids; higher values indicate closer regions.
Within the model, the probability of the disease to spread from one ADM2 region to another is proportionalto the estimated weights in the mobility matrix.
2.3.4 COVID-19 Cases and Deaths

Sub-national historical daily number of COVID-19 cases are obtained fromHDX. Inmost countries of interest,the source for COVID case counts is the nation’s Ministry of Public Health. Additional federal (ADM0) histor-ical data is also obtained from the WHO. Data is usually available at the ADM1 level. To obtain ADM2-levelcase counts, ADM1 case counts are scaled using the ADM2 population.
2.3.5 Contact Matrix

Contactmatrices quantify howmuch people fromdifferent age groups interact, and are extracted fromPremet al. [21]. The contact matrices used are taken from the home, school, work, and other locations. For somecountries, the contact matrix is not directly available. In these instances, a country in the same region andwith similar socioeconomic indicators is used as a proxy.5
2.3.6 Non-pharmaceutical Interventions (NPIs)

NPIs are mitigations, apart from getting vaccinated and taking medicine, that people and communities cantake to help slow the spread of communicable diseases. As a vaccine for COVID-19 has yet to be deployed,NPIs are among the the best strategies for controlling the spread of the current COVID-19 virus. The struc-ture of the OCHA-Bucky model allows for the incorporation of NPIs via the modification of a combinationof the following : the basic reproduction number, local contactmatrices, and inter-regionalmobilitymatrices.
For each country an initial list of NPIs was obtained from the ACAPS COVID-19 Government MeasuresDataset. This dataset is complementedwith additional qualitative information from in-country stakeholders.The estimated compliance level are tailored to specific countries.
2.3.6.1 Implementation of Nonpharmaceutical Interventions

NPIs are categorized and implemented in OCHA-Bucky based on their classification into three categories:
1. Contact-Matrix Based NPIs;These NPIs are those that effect only certain age groups within the total population. These NPI effectthe ratios relating the components of the contact matrices. The NPI that fall under this category are:

• School closure
• Shielding elderly

2. Mobility Based NPI;This classification is for those NPI that lead to changes in mobility/movement between administra-tive districts (as opposed to movement within an administrative district). The NPI that fall under thiscategory are :
• Closing of borders, ports, and/or international flights
• Restricting inter-regional movement

3. Reproduction Number Based NPI;This classification is for those NPI that have an effect on the overall scaling of transmissibility. Itencompasses both intra-regional measures to reduce transmission as well as national level initiativesdesigned to reduce transmission throughout the country. The NPI that fall under this category are :
• Social distancing;

5The model from The London School of Hygiene and Tropical Medicine also utilizes this strategy.
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• Face mask wearing;
• Installation of hand washing stations;
• Reduction of size of public gatherings;
• Closing businesses;
• Partial lockdown;
• Awareness campaigns (e.g., vaccination programs).

A summary of the NPIs that are currently implemented in OCHA-Bucky are given in Table 3. This table in-cludes the classification, effects, and sources that are currently being used to approximate the effects ofvarious NPI.
With the current implementation, we have the ability to distinguish between the effects of NPI within thecategories mentioned above. For the case in which multiple NPI within category III are implemented, wehave implemented a value-added approach to calculating their effectiveness in reducing the basic repro-duction number. In this case, we calculate the reduction inR0 based on the number of NPIs in place. If 1 NPIis in place, R0 is reduced by 40%. If 2 NPI are in place, R0 is reduced by 60%. If 3 or more NPI are in place,then R0 is reduced by 70%.
NPI Classification Effect in Model Mean Reduction (SD) Source

Contact-based:School Closure Reduce contact betweenschool aged groups andincrease the contacts in thehome environment

∼44% reduction in overallcommunity transmission [22]

Mobility-based Reduction in mobility be-tween regions 60% (10) [23][22]
Reproduction Number-based 60-85% reduction in overallcommunity transmission 72.5% (6.25) [24][25]

Table 3: Summary of Effects of NPI on model components

3 Model Initialization and Output
Using the data sources and methods described in Sections 2.2 and 2.3, we are able to both estimate valuesof parameters initialize the values of all the compartments in the model on the last date of the historicaldata. This will serve as the initial state of our simulation.
As output, OCHA-Bucky generates one data file per Monte Carlo run. The files contain data at the ADM2level and are indexed by data and run ID. This data is post-processed to combine data across all the datesand simulations. It can then be aggregated at desired geographic levels. A separate file is created for eachadministrative level, with each row indexed by date, admin ID, and quantile. The columns of this output fileare described in Table 4.
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Index name Description

adm0, adm1, or adm2 The adm ID corresponding to the geographic level
date The date
quantile Quantile value
Column name Description

case_reporting_rate Case reporting rate
active_asymptomatic_cases Current number of actively infectious but asymp-tomatic cases
cumulative_cases Cumulative number of cumulative cases (includingunreported)
cumulative_deaths Cumulative number of deaths
cumulative_deaths_per_100k Cumulative number of deaths per 100,000 people
cumulative_reported_cases Cumulative number of reported cases
cumulative_reported_cases_per_100k Number of reported cumulative cases per 100,000people
current_hospitalizations Number of active severe cases
current_hospitalizations_per_100k Number of active cases per 100,000 people
current_icu_usage ICU bed usage∗
current_vent_usage Current ventilator usage∗
total_population Population
daily_cases Number of daily new cases (including unreported)
daily_deaths Number of daily new deaths
daily_hospitalizations Number of daily new severe cases
daily_reported_cases Number of reported daily new cases
doubling_t Local doubling time as estimated from the histori-cal data
R_eff Local effective reproductive number

Table 4: Model output column descriptions.
∗indicates model outputs that are not calibrated/validated for the context of low-middle income countries.

4 Model Open Source Code and Documentation
Further documentation and resources can be found in the following locations.

• For documentation related to the United States version of the model (JHUAPL-Bucky) :
– The JHUAPL-Bucky model is available on Github at https://github.com/mattkinsey/bucky.
– Documentation for JHUAPL-Bucky is available at https://docs.buckymodel.com/en/stable/.

• For the latest resources on the international version of the model (OCHA-Bucky) :
– TheOCHA-Buckymodel is available onGithub at https://github.com/OCHA-DAP/pa-ocha-bucky.
– Documentation for OCHA-Bucky is available at

https://ocha-bucky.readthedocs.io/en/latest/index.html
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